Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Colin A. Bremner and William T. A. Harrison*

Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland

Correspondence e-mail:
w.harrison@abdn.ac.uk

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{N}-\mathrm{C})=0.004 \AA$
R factor $=0.024$
$w R$ factor $=0.064$
Data-to-parameter ratio $=20.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

Guanylurea vanadium arsenate

The title compound consists of anionic $\left[\mathrm{V}_{4} \mathrm{As}_{6} \mathrm{O}_{30} \mathrm{H}_{6}\right]^{4-}$ clusters, each accompanied by four guanylurea $\left(\mathrm{C}_{2} \mathrm{~N}_{4} \mathrm{OH}_{7}{ }^{+}\right)$ cations. An extensive hydrogen-bonding network stabilizes the crystal packing.

Comment

The $\left[\mathrm{V}_{4} \mathrm{As}_{6} \mathrm{O}_{30} \mathrm{H}_{6}\right]^{4-}$ cluster seen here, (I) (Fig. 1), has been observed previously (Durif \& Averbuch-Pouchot, 1979; Nenoff et al., 1994), accompanied by other molecular cations. It contains two pairs of VO_{6} octahedra sharing an edge (via O5 and O8). The VO_{6} groups are highly distorted and each shows a short ($d<1.60 \AA$) $\mathrm{V}=\mathrm{O}$ 'vanadyl' group and a long ($d>$ $2.30 \AA$) trans- $\mathrm{V}-\mathrm{O}$ bond, as typically seen for V^{V} (Durif \& Averbuch-Pouchot, 1979). The four remaining V-O bonds are intermediate in length between these extremes. The three distinct arsenate tetrahedra bridge the two octahedral pairs into a discrete cluster. The As1- and As3-centred groups both make two As- $\mathrm{O}-\mathrm{V}$ links and have two terminal As-O vertices, one of which is protonated. The As2 group makes three As $-\mathrm{O}-\mathrm{V}$ bonds and has one terminal As- OH grouping. The 15 distinct O atoms in the cluster divide into terminal vanadyl O atoms (O 2 and O 7), terminal As- O atoms (O11 and O15), terminal As-OH species (O6, O13 and $\mathrm{O} 14)$, As $-\mathrm{O}-\mathrm{V}$ bridges ($\mathrm{O} 1, \mathrm{O} 3, \mathrm{O} 4, \mathrm{O} 9, \mathrm{O} 10$ and O 12 ; average $\mathrm{V}-\mathrm{O}-$ As bond angle 125.5°), a $\mathrm{V}-\mathrm{O}-\mathrm{V}$ bridge (O5) and the three-coordinate (to two V and one As) O 8 species. The O8/V1/V2/As2 grouping is almost flat [sum of $X-\mathrm{O} 8-X(X=\mathrm{V}, \mathrm{As})$ bond angles $\left.=359.8^{\circ}\right]$. This study has located the H atoms in this type of cluster for the first time. As predicted (Nenoff et al., 1994), they are all associated with terminal As-O vertices. The As-O terminal bonds $\left[d_{\mathrm{av}}=\right.$ 1.658 (2) \AA A are significantly shorter than the $\mathrm{As}-\mathrm{OH}\left[d_{\mathrm{av}}=\right.$ 1.718 (2) \AA] bonds.

Here, the complete cluster is generated by inversion symmetry. In $\left(\mathrm{NH}_{4}\right)_{6}\left[\mathrm{~V}_{4} \mathrm{As}_{6} \mathrm{O}_{30} \mathrm{H}_{6}\right]$ (Durif \& AverbuchPouchot, 1979) and $\left(\mathrm{N}_{2} \mathrm{C}_{6} \mathrm{H}_{14}\right)_{2}\left[\mathrm{~V}_{4} \mathrm{As}_{6} \mathrm{O}_{30} \mathrm{H}_{6}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (Nenoff et al., 1994), the equivalent cluster possesses $2 / m$ symmetry, whereas in $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]_{2}\left[\mathrm{~V}_{4} \mathrm{As}_{6} \mathrm{O}_{30} \mathrm{H}_{8}\right] \cdot 5.33 \mathrm{H}_{2} \mathrm{O}$ (Nenoff et al., 1994), it has mmm symmetry.

The guanylurea (1-carbamoylguanidinium) moieties show typical behaviour (Zaman \& Darlow, 1986) and are essentially planar (r.m.s. deviations from the least-squares plane $=0.018$

Received 25 April 2002 Accepted 29 April 2002 Online 11 May 2002

The structure of (I) (50\% displacement ellipsoids, arbitrary spheres for the H atoms). Symmetry code: (i) $-x,-y, 1-z$.
and $0.006 \AA$ for the non-H atoms of the C1- and C3-containing molecules, respectively).

The hydrogen-bonding interactions include cluster-tocluster $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and cation-to-cluster $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ links as well as cation-to-cation $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and both intramolecular and intermolecular cluster-to-cluster $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ bonds. A [100] view (Fig. 2) of the resulting crystal packing shows a square network of clusters with the organic cations forming double stacks in the channel-like interstices, somewhat like the situation in $\left(\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right)_{2}\left[\mathrm{~V}_{4} \mathrm{As}_{6} \mathrm{O}_{30} \mathrm{H}_{8}\right] \cdot 5.33 \mathrm{H}_{2} \mathrm{O}$ (Nenoff et al., 1994).

Experimental

25 ml of $1.0 \mathrm{M} \mathrm{H}_{3} \mathrm{AsO}_{4}$ solution was added to $0.501 \mathrm{~g} \mathrm{VOSO}_{4} \cdot n \mathrm{H}_{2} \mathrm{O}$ with gentle agitation until the solid dissolved. Then, 0.500 g dicyandiamide was slowly added to the mixture, accompanied by vigorous effervescence, during which time the solution changed colour from pale blue to olive green. The mixture was transferred to an evaporating basin and chunky orange crystal masses were manually recovered from the olive-green gel/sludge after standing for 7 d in air. The starting dicyandiamide was transformed to guanylurea by slow acid hydrolysis.

Crystal data

$\left(\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{~N}_{4} \mathrm{O}\right)_{4}\left[\mathrm{As}_{6} \mathrm{~V}_{4} \mathrm{O}_{30} \mathrm{H}_{6}\right]$
$M_{r}=1551.8$
Triclinic, $P \overline{1}$
$a=8.5376$ (4) \AA
$b=11.0544$ (5) \AA
$c=12.4672(5) \AA$
$\alpha=83.144(1)^{\circ}$
$\beta=82.652(1)^{\circ}$
$\gamma=69.848$ (1) ${ }^{\circ}$
$V=1091.94$ (8) \AA^{3}

Data collection

Bruker SMART1000 CCD diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
$T_{\text {min }}=0.291, T_{\text {max }}=0.408$
8831 measured reflections

$Z=1$

$D_{x}=2.360 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 5166 reflections
$\theta=2.5-30.0^{\circ}$
$\mu=5.46 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, orange
$0.30 \times 0.30 \times 0.20 \mathrm{~mm}$

6216 independent reflections
5186 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.014$
$\theta_{\text {max }}=30.1^{\circ}$
$h=-11 \rightarrow 12$
$k=-12 \rightarrow 15$
$l=-16 \rightarrow 17$

Figure 2
Packing diagram for (I), viewed approximately down [100], with the cluster anions represented by polyhedra and H atoms omitted for clarity. Colour key: VO_{6} octahedra orange, AsO_{4} tetrahedra yellow, C atoms blue, N atoms green, and O atoms red.

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.064$
$S=1.01$
6216 reflections
308 parameters
H -atom parameters constrained

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0351 P)^{2}\right] \\
\text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.78 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.64 \mathrm{e}^{-3}
\end{gathered}
$$

Extinction correction: SHELXL97
Extinction coefficient: 0.0018 (3)

Table 1
Selected geometric parameters ($\left(\mathrm{A},{ }^{\circ}\right)$.

V1-O7	1.5960 (18)	As2-O1 ${ }^{\text {i }}$	1.6921 (16)
V1-O5	1.7541 (16)	As2-O13	1.7143 (17)
V1-O3	1.9498 (17)	As3-O15	1.6611 (18)
V1-O12	1.9678 (18)	As3-O12	1.6855 (18)
V1-O10	1.9864 (17)	As3-O9	1.6969 (17)
V1-O8	2.3145 (16)	As3-O14	1.7247 (17)
V2-O2	1.5782 (17)	O20-C2	1.224 (3)
V2-O5	1.8773 (17)	N1-C1	1.362 (3)
V2-O9	1.9154 (17)	N1-C2	1.405 (3)
V2-O4	1.9155 (17)	N2-C2	1.330 (4)
V2-O1	1.9314 (16)	N3-C1	1.307 (3)
V2-O8	2.3401 (16)	N4-C1	1.314 (3)
As1-O11	1.6546 (16)	O21-C4	1.211 (3)
As1-O10	1.6805 (17)	N5-C3	1.307 (4)
As1-O4 ${ }^{\text {i }}$	1.7023 (16)	N6-C3	1.323 (3)
As1-O6	1.7164 (17)	N7-C3	1.348 (4)
As2-O8	1.6677 (15)	N7-C4	1.395 (4)
As2-O3 ${ }^{\text {i }}$	1.6895 (16)	N8-C4	1.328 (4)
As2 ${ }^{\text {i }}-\mathrm{O} 1-\mathrm{V} 2$	123.98 (9)	As2-O8-V2	136.64 (8)
$\mathrm{As} 2{ }^{\text {i }}-\mathrm{O} 3-\mathrm{V} 1$	120.66 (9)	V1-O8-V2	85.55 (5)
$\mathrm{As} 1{ }^{\text {i }}-\mathrm{O} 4-\mathrm{V} 2$	126.80 (10)	As3-O9-V2	127.28 (10)
$\mathrm{V} 1-\mathrm{O} 5-\mathrm{V} 2$	120.99 (9)	As1-O10-V1	130.33 (10)
As2-O8-V1	137.38 (9)	As3-O12-V1	124.11 (9)

[^0]Table 2
Hydrogen-bonding geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O6-H6 . ${ }^{\text {O }} 11^{\text {i }}$	0.93	1.68	2.597 (2)	166
O13-H13 . O 15	0.84	1.72	2.548 (2)	168
$\mathrm{O} 14-\mathrm{H} 14 \cdots \mathrm{O} 15^{\text {ii }}$	0.92	1.71	2.617 (3)	169
N1-H1 . . O 10	0.86	2.37	3.101 (3)	143
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 7$	0.86	2.41	3.165 (3)	147
$\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 20^{\text {iii }}$	0.86	2.07	2.904 (3)	165
$\mathrm{N} 2-\mathrm{H} 2 B \cdots \mathrm{O} 12$	0.86	2.40	3.191 (3)	154
$\mathrm{N} 2-\mathrm{H} 2 B \cdots \mathrm{O} 10$	0.86	2.58	3.254 (3)	136
$\mathrm{N} 3-\mathrm{H} 3 A \cdots \mathrm{O} 13^{\text {iv }}$	0.86	2.10	2.947 (3)	167
N3-H3B \cdots O20	0.86	2.01	2.649 (3)	130
$\mathrm{N} 4-\mathrm{H} 4 A \cdots \mathrm{O}^{\text {v }}$	0.86	2.12	2.952 (3)	161
$\mathrm{N} 4-\mathrm{H} 4 \mathrm{~B} \cdots \mathrm{O} 7$	0.86	2.33	3.105 (3)	149
N5-H5A \cdots O14 ${ }^{\text {vi }}$	0.86	2.31	3.147 (3)	163
N5-H5B..O21	0.86	2.06	2.685 (3)	128
N5-H5B \cdots O21 ${ }^{\text {vii }}$	0.86	2.12	2.829 (3)	140
N6-H6B \cdots O1 ${ }^{\text {viii }}$	0.86	2.39	3.058 (3)	135
N6-H6B..O11	0.86	2.49	3.171 (4)	137
N7-H7 \cdots O11	0.86	1.85	2.685 (3)	163
N8-H8A \cdots O15 ${ }^{\text {ix }}$	0.86	2.46	3.312 (4)	171
$\mathrm{N} 8-\mathrm{H} 8 B \cdots \mathrm{O} 4^{\text {ix }}$	0.86	2.38	3.051 (3)	135

Symmetry codes: (i) $-x, 1-y, 1-z$; (ii) $-x,-y,-z$; (iii) $-x, 1-y,-z$; (iv) $x-1,1+y, z$; (v) $-1-x, 1-y, 1-z$; (vi) $1+x, y, z$; (vii) $1-x, 1-y,-z$; (viii) $-x,-y, 1-z$; (ix) $x, 1+y, z$.

Data collection: SMART (Bruker, 1999); cell refinement: SMART; data reduction: $S M A R T$; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

References

Bruker (1999). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Durif, A. \& Averbuch-Pouchot, M. T. (1979). Acta Cryst. B35, 14411444.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565-565.
Nenoff, T. M., Stucky, G. D. \& Harrison, W. T. A. (1994). Z. Kristallogr. 209, 892-898.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Zaman, N. \& Darlow, S. F. (1986). J. Bangladesh Acad. Sci. 10, 79-84.

[^0]: Symmetry code: (i) $-x,-y, 1-z$.

